D. Getting to the Wave Equation
(a) Wave Equation? What Wave Equation? What does a Wave Equation do?
Take a familiar example : EM wave equation in vacuum

$$\nabla^2 \vec{E} = \frac{1}{C^2} \frac{\partial^2 \vec{E}}{\partial t^2}$$
 (same form for \vec{B}) $C = \frac{1}{\sqrt{46\varepsilon_0}}$
Tor a standard form^t
 $\vec{E} = \vec{E}_0 \ C^{2} (\frac{2\pi x}{\lambda} - 2\pi ft) = \vec{E}_0 \ C^{2} (kx - \omega t)$
• Substituting into wave equation gives the dispersion relation
 $k^2 = \frac{\omega^2}{C^2}$ or $\omega = ck$ or $f\lambda = C$

+ In EM, the complex form is for convenience. We could use ~ cos(kx-cst).

• At
$$t=0$$
, $\vec{E}(x,t_0) = \vec{E}_{0,1} e^{ik_1x} + \vec{E}_{0,2} e^{ik_2x}$
then $\vec{E}(x,t) = \vec{E}_{0,1} e^{ik_1x} e^{-i\omega t} + \vec{E}_{0,2} e^{ik_2x} e^{-i\omega t}$ (*)
 $\omega_1 = ck_1$, $\omega_2 = ck_2$
Ex: Show that (*)⁺ is a solution to the EM wave equation
Remark: This comes about because the wave equation
is a Linear Partial Differential Equation
Another interesting example:
Guitar String, $\frac{\partial^2 \psi}{\partial x^2} = (\frac{\mu}{T}) \frac{\partial^2 \psi}{\partial t^2}$
Boundary Conditions select normal modes

(b) Quantum Particle (massive) de Broglie: $\lambda_{dB} = \frac{h}{b} = \frac{2\pi h}{b}$ • Particle with a definite $p \Rightarrow$ there is a (one value) definite λ · Free particle "No force, constant potential energy over space $-\frac{\partial U}{\partial \alpha} = F = 0$ " Take U = constant = 0 $E = \frac{1}{2}mv^2 = \frac{P^2}{2m}$ $E = \frac{p^2}{2m}$ plays the role of the dispersion relation

Recall: Using photon properties,
$$\vec{E} \sim \vec{E}_{o} e^{ikx} - i\omega t$$

 $\sim \vec{E}_{o} e^{i(\frac{px}{h}} - \frac{Ft}{h})$
Massive (mass m) particle of definite momentum p (free particle)
Wave form $\underline{\Psi}_{p}(x,t) \sim e^{i(\frac{2\pi}{h}x - \omega t)} \sim e^{i(\frac{px}{h} - \frac{Ft}{h})}$
emphasizes definite p
and E and p are related by $E = \frac{p^{2}}{2m}$

The complex wavefunction for a free particle in QM is **a necessity** because a definite momentum implies $\Delta p=0$. The complex form gives $|\psi|^2 = \text{constant everywhere}$, thus corresponding to $\Delta x \rightarrow \infty$, as required. A sinusoidal wave will not work.

is a Wave Equation that would give the night E-p relation?

22